
Chapter 8Control of a Looping KiteIn order to demonstrate the versatility of the proposed real-time iteration sheme we presenthere the ontrol of an airborne kite as a periodi ontrol example. The kite is held by twolines whih allow to ontrol the lateral angle of the kite, see Fig. 8.1. By pulling one linethe kite will turn in the diretion of the line being pulled. This allows an experiened kitepilot to �y loops or similar �gures. The aim of our automati ontrol is to make the kite�y a �gure that may be alled a �lying eight�, with a yle time of 8 seonds (see Fig. 8.2).The orresponding orbit is not open-loop stable, so that feedbak has to be applied duringthe �ight � we will show simulation results where our proposed real-time iteration shemewas used to ontrol the kite, with a sampling time of one seond.8.1 The Dual Line Kite ModelThe movement of the kite at the sky an be modelled by Newton's laws of motion anda suitable model for the aerodynami fore. Most di�ulty lies in the determination ofsuitable oordinate systems: we will �rst desribe the kite's motion in polar oordinates,and seondly determine the diretion of the aerodynami fores.8.1.1 Newton's Laws of Motion in Polar CoordinatesThe position p ∈ R
3 of the kite an be modelled in 3-dimensional Eulidean spae, hoosingthe position of the kite pilot as the origin, and the third omponent p3 to be the height ofthe kite above the ground. With m denoting the mass of the kite and F ∈ R

3 the totalfore ating on the kite, Newton's law of motion reads
p̈ =

d 2p

dt2
=
F

m
.Let us introdue polar oordinates θ, φ, r:

p =





p1
p2
p3



 =





r sin(θ) cos(φ)
r sin(θ) sin(φ)

r cos(θ)
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Figure 8.1: A piture of the kite.Note that the distane r between pilot and kite is usually onstant during �ight, and θ isthe angle that the lines form with the vertial. In these oordinates, p̈ looks as follows
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(8.1)Let us introdue a loal right handed oordinate system with the three basis vetors
eθ =





cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)



 , eφ =





− sin(φ)
cos(φ)

0



 , and er =





sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)



 .In this oordinate system, the partial derivatives of p with respet to θ, φ, r beome
∂p

∂θ
= reθ,

∂p

∂φ
= r sin(θ)eφ, and ∂p

∂r
= er,and

∂2p

∂θ2
= −rer,

∂2p

∂φ2
= −r sin2(θ)er − r sin(θ) cos(θ)eθ, and ∂2p

∂r2
= 0,as well as

∂2p

∂φ∂θ
= r cos(θ)eφ,

∂2p

∂r∂θ
= eθ, and ∂2p

∂r∂φ
= sin(θ)eφ.



8.1 The Dual Line Kite Model 141Eq. (8.1) an therefore be written as:
p̈ = eθ

(

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇
)

+ eφ

(

r sin(θ)φ̈+ 2r cos(φ)φ̇θ̇ + 2 sin(θ)ṙφ̇
)

+ er

(

r̈ − rθ̇2 − r sin2(θ)φ̇2
)

.De�ning
Fθ := F · eθ, Fφ := F · eφ, and Fr := F · er,we an write Newton's laws of motion in the form

rθ̈ − r sin(θ) cos(θ)φ̇2 + 2ṙθ̇ =
Fθ

m
,

r sin(θ)φ̈+ 2r cos(θ)φ̇θ̇ + 2 sin(θ)ṙφ̇ =
Fφ

m
,

r̈ − rθ̇2 − r sin2(θ)φ̇2 =
Fr

m
. (8.2)If the length of the lines, denoted by r, is kept onstant, all terms involving time derivativesof r will drop out. Furthermore, the last equation (8.2) will beome redundant, as thefore in the radial diretion will be augmented by a onstraint fore ontribution Fc, sothat Eq. (8.2) is automatially satis�ed when the augmented fore F ′

r := Fr − Fc replaes
Fr, with Fc = Fr + rθ̇2 + r sin2(θ)φ̇2. In this ase the equations of motion1 simplify to

θ̈ =
Fθ

rm
+ sin(θ) cos(θ)φ̇2, (8.3)

φ̈ =
Fφ

rm
− 2 cot(θ)φ̇θ̇. (8.4)In our model, the fore vetor F = F gra + F aer onsists of two ontributions, the grav-itational fore F gra and the aerodynami fore F aer. In artesian oordinates, F gra =

(0, 0,−mg)T with g = 9.81 m s−2 being the earth's gravitational aeleration. In loaloordinates we therefore have
Fθ = F gra

θ + F aer
θ = sin(θ)mg + F aer

θ and Fφ = F aer
φ .It remains to derive an expression for the aerodynami fore F aer.8.1.2 Kite Orientation and the Aerodynami ForeTo model the aerodynami fore that is ating on the kite, we �rst assume that the kite'strailing edge is always pulled by the tail into the diretion of the e�etive wind, as seen1Note that the validity of these equations requires that Fc = Fr + rθ̇2 + r sin2(θ)φ̇2 ≥ 0, as a line anonly pull, not push.



142 Control of a Looping KiteName Symbol Valueline length r 50 mkite mass m 1 kgwind veloity vw 6 m/sdensity of air ρ 1.2 kg/m3harateristi area A 0.5 m2lift oe�ient Cl 1.5drag oe�ient Cd 0.29Table 8.1: The kite parameters.from the kite's inertial frame. Under this assumption the kite's longitudinal axis is alwaysin line with the e�etive wind vetor we := w− ṗ, where w = (vw, 0, 0)
T is the wind as seenfrom the earth system, and ṗ the kite veloity. If we introdue a unit vetor el pointingfrom the front towards the trailing edge of the kite (f. Fig. 8.1), we therefore assume that

el =
we

‖we‖
.The transversal axis of the kite an be desribed by a perpendiular unit vetor et that ispointing from the left to the right wing tip. Clearly, it is orthogonal to the longitudinalaxis, i.e.,

et · el =
et · we

‖we‖
= 0. (8.5)The orientation of the transversal axis et against the lines' axis (whih is given by thevetor er) an be in�uened by the length di�erene ∆l of the two lines. If the distanebetween the two lines' �xing points on the kite is d, then the vetor from the left to theright �xing point is det, and the projetion of this vetor onto the lines' axis should equal

∆l (being positive if the right wingtip is farther away from the pilot), i.e., ∆l = d et · er.Let us de�ne the lateral angle ψ to be
ψ = arcsin

(

∆l

d

)

.We will assume that we ontrol this angle ψ diretly. It determines the orientation of etwhih has to satisfy:
et · er =

∆l

d
= sin(ψ). (8.6)A third requirement that et should satisfy is that

(el × et) · er =
we × et
‖we‖

· er > 0, (8.7)



8.1 The Dual Line Kite Model 143whih takes aount of the fat that the kite is always in the same orientation with respetto the lines.How to �nd a vetor et that satis�es these requirements (8.5)�(8.7)? Using the proje-tion wp
e of the e�etive wind vetor we onto the tangent plane spanned by eθ and eφ,

wp
e := eθ(eθ · we) + eφ(eφ · we) = we − er(er · we),we an de�ne the orthogonal unit vetors

ew :=
wp

e

‖wp
e‖

and eo := er × ew,so that (ew, eo, er) form an orthogonal right-handed oordinate basis. Note that in thisbasis the e�etive wind we has no omponent in eo diretion, as
we = ‖wp

e‖ew + (we · er)er.We will show that the de�nition
et := ew(− cos(ψ) sin(η)) + eo(cos(ψ) cos(η)) + er sin(ψ)with

η := arcsin

(

we · er
‖wp

e‖
tan(ψ)

)satis�es the requirements (8.5)�(8.7). Equation (8.5) an be veri�ed by substitution of thede�nition of η into
et · we = − cos(ψ) sin(η)‖wp

e‖+ sin(ψ)(we · er) = 0.Eq. (8.6) is trivially satis�ed, and Eq. (8.7) an be veri�ed by alulation of
(we × et) · er = (we · ew) cos(ψ) cos(η)− (we · eo)(− cos(ψ) sin(η))

= ‖wp
e‖ cos(ψ) cos(η)(where we used the fat that we · eo = 0). For angles ψ and η in the range from −π/2 to

π/2 this expression is always positive. The above onsiderations allow to determine theorientation of the kite depending on the ontrol ψ and the e�etive wind we only. Notethat the onsiderations would break down if the e�etive wind we would be equal to zero,or if
∣

∣

∣

∣

we · er
we · ew

tan(ψ)

∣

∣

∣

∣

> 1.The two vetors el × et and el are the diretions of aerodynami lift and drag, respetively.To ompute the magnitudes Fl and Fd of lift and drag we assume that the lift and dragoe�ients Cl and Cd are onstant, so that we have
Fl =

1

2
ρ‖we‖

2ACl and Fd =
1

2
ρ‖we‖

2ACd,



144 Control of a Looping Kitewith ρ being the density of air, and A being the harateristi area of the kite.Given the diretions and magnitudes of lift and drag, we an ompute F aer as theirsum, yielding
F aer = Fl(el × et) + Fdelor, in the loal oordinate system

F aer
θ = Fl((el × et) · eθ) + Fd(el · eθ) and F aer

φ = Fl((el × et) · eφ) + Fd(el · eφ).The system parameters that have been hosen for the simulation model are listed in Ta-ble 8.1. De�ning the system state x := (θ, θ̇, φ, φ̇)T and the ontrol u := ψ we an summa-rize the system equations (8.3)�(8.4) in the short form
ẋ = f(x, u),with

f((θ, θ̇, φ, φ̇)T , ψ) :=

















θ̇

F aer
θ (θ, θ̇, φ, φ̇, ψ)

rm
+ sin(θ)

g

r
+ sin(θ) cos(θ)φ̇2

φ̇

F aer
φ (θ, θ̇, φ, φ̇, ψ)

rm
− 2 cot(θ)φ̇θ̇

















.

8.2 A Periodi OrbitUsing the above system model, a periodi orbit was determined that an be haraterizedas a �lying eight� and whih is depited as a φ − θ−plot in Fig. 8.2, and as a time plotin Fig. 8.3. The wind is assumed to blow in the diretion of the p1-axis (θ = 90o and
φ = 0o). The periodi solution was omputed using the o�-line variant of MUSCOD-II,imposing periodiity onditions with period T = 8 seonds and suitable state boundsand a suitable objetive funtion in order to yield a solution that was onsidered to bea meaningful referene orbit. Note that the ontrol ψ (see Fig. 8.3) is positive when thekite shall turn in a lokwise diretion, as seen from the pilot's viewpoint, and negativefor an anti-lokwise diretion. We will denote the periodi referene solution by xr(t) and
ur(t). This solution is de�ned for all t ∈ (−∞,∞) and satis�es the periodiity ondition
xr(t + T ) = xr(t) and ur(t+ T ) = ur(t).It is interesting to note that small errors aumulate very quikly so that the unon-trolled system will not stay in the periodi orbit very long during a numerial simulation(see Fig. 8.4). This observation an be on�rmed by investigating the asymptoti stabilityproperties of the periodi orbit.
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Figure 8.2: Periodi orbit plotted in the φ− θ−plane, as seen by the kite pilot. The dotsseparate intervals of one seond.
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φ [deg]Figure 8.4: Open-loop ontrol applied to the undisturbed system.8.2.1 Stability Analysis of the Open-Loop SystemTo determine the asymptoti stability properties of the open-loop system along the periodiorbit, let us onsider an initial value problem for the open-loop system on the interval [0, T ]orresponding to one period:̇
x(t) = f(x(t), ur(t)), ∀t ∈ [0, T ],

x(0) = x0.The solution trajetories x(t) an be regarded as funtions of the initial value x0. Note thatfor x0 = xr(0) the solution is idential to the referene trajetory xr(t). The sensitivitymatries
W (t) :=

∂x(t)

∂x0
(xr(0)), t ∈ [0, T ],an therefore be obtained as the solution of the matrix initial value problem:

Ẇ (t) =
∂f

∂x
(xr(t), ur(t)) · W (t) ∀t ∈ [0, T ],

W (0) = Inx .The �nal valueW (T ) is alled themonodromy matrix . It haraterizes the sensitivity of the�nal state of eah period with respet to the initial value. Asymptotially stable periodiorbits are haraterized by a monodromy matrix whose eigenvalues (also alled �FloquetMultipliers�) all have a modulus smaller than one, whih means that initial disturbanesare damped out during the yles. For a proof see e.g. Amann [Ama83℄.



8.3 The Optimal Control Problem 147A numerial omputation of W (T ) for the kite model along the hosen periodi orbityields
W (T ) =









3.0182 2.4014 0.9587 −0.1307
3.3399 2.5500 0.0054 −0.3935
−2.7170 −1.8596 0.8436 0.5072
−2.8961 −2.0491 0.5601 0.4640









,whih has the eigenvalue spetrum
σ (W (T )) = { 5.29, 1.53, 6.16 · 10−2, 4.17 · 10−7 },ontaining two eigenvalues that have a modulus bigger than one. This on�rms that thesystem is asymptotially unstable in the periodi referene orbit.8.3 The Optimal Control ProblemGiven an initial state xt0 at time t0, an optimal ontrol problem an be formulated thattakes aount of the objetive to keep the system lose to the referene orbit. For this aimwe de�ne a Lagrange term

L(x, u, t) := (x− xr(t))
TQ(x− xr(t)) + (u− ur(t))

TR(u− ur(t))with diagonal weighting matries
Q := ·









1.2 0 0 0
0 3.0s2 0 0
0 0 3.0 0
0 0 0 3.0s2









10−4deg−2s−1 and R := 1.0 · 10−2deg−2s−1.A hard onstraint is given by the fat that we do not want the kite to rash onto theground (θ = 90 degrees), and for seurity, we require a path onstraint funtion
h(x, u) :=

(

75 deg − θ
)to be positive. Using these de�nitions, we formulate the following optimal ontrol problemon the moving horizon [t0, t0 + 2T ]:

min
u(·),x(·)

∫ t0+2T

t0

L(x(t), u(t), t) dt (8.8)subjet to
ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, t0 + 2T ],

x(t0) = xt0 ,

h(x(t), u(t)) ≥ 0, ∀t ∈ [t0, t0 + 2T ].
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φ [deg]Figure 8.5: Closed-loop ontrol applied to the undisturbed system, simulation of 100 peri-ods. Numerial errors are attenuated by very small ontrol responses (with u(t)− ur(t) inthe order of 10−2 degree) and do not aumulate.
8.4 Closed-Loop SimulationsIn the multiple shooting disretization the multiple shooting intervals were hosen to beeah of one seond length, thus allowing eight ontrol orretions per period T . The Hessianmatrix was approximated using the Gauss-Newton approah for integral least squares termsdesribed in Se. 6.4. The initialization of subsequent optimization problems was ahievedwith a shift strategy where the new �nal interval was initialized by an integration usingthe nominal open-loop ontrol ur(t), f. Se. 4.4.1.As a �rst test of the algorithm we try to ontrol the undisturbed system, and the resultof a simulation of 100 periods is depited in Fig. 8.5. It an be seen that the refereneorbit is perfetly traked. The dots separate intervals of one seond length and orrespondto the sampling times.For a seond test we give the kite a slight �kik� at time t = 1.0 seonds that leadsto a disturbane in the angular veloity θ̇. It hanges from −1 deg/s to +5 deg/s. Thelosed-loop response is depited in Fig. 8.6 as a φ− θ−plot.As a third test we give the kite a moderate �kik� at time t = 3.5 seonds that lets theangular veloity θ̇ hange from 12 deg/s to 25 deg/s. The losed-loop response is depitedin Fig. 8.7. For a omparison we also show the open-loop response to this disturbane inFig. 8.8, whih results in a rash 5 seonds after the disturbane.In a fourth test we �kik� the kite strongly at time t = 4.0 seonds so that the angularveloity θ̇ hanges abruptly from 20 deg/s to−7 deg/s. The losed-loop response is depitedin Fig. 8.9.
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φ [deg]Figure 8.6: Closed-loop response to a small disturbane in θ̇ that hanges from −1 deg/s to
+5 deg/s at time t = 1.0 seonds. After one period the disturbane is nearly attenuated.
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φ [deg]Figure 8.8: Open-loop response to the same disturbane as in Fig. 8.7, at time t = 3.5 se-onds. Five seonds after the disturbane the kite rashes onto the ground (θ=90 degrees).
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sθ = 0.9 deg, sθ̇ = 0.9 deg s−1, sφ = 0.6 deg, and sφ̇ = 0.6 deg s−1for the weak disturbane test, and
sθ = 4.5 deg, sθ̇ = 4.5 deg s−1, sφ = 3 deg, and sφ̇ = 3 deg s−1for the strong disturbane test. For eah senario, we have arried out simulations for100 periods (i.e., for 800 seonds). The resulting φ − θ−plots an be seen in Fig. 8.10 forthe weak disturbane senario, and in Fig. 8.11 for the strong disturbane senario. Whilethe weak senario shows how niely the losed-loop system behaves even in the preseneof moderate disturbanes, the strong disturbane senario is ertainly at the limits ofthe appliability of the hosen ontrol approah, as the disturbanes sometimes push thesystem state out of the state bounds spei�ed in the optimization problem (θ ≤ 75 degrees).The resulting infeasibility of the optimization problems was ushioned by the relaxationstrategy of the QP solver. However, this does not give any guarantee for the working ofour approah in the presene of severe disturbanes. Instead, a sheme employing softonstraint formulations should be employed.The omputation time for eah real-time iteratiion yle did not exeed the samplingtime of one seond in all simulations and averaged to 0.45 seonds with a standard deviation
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